jueves, 1 de octubre de 2015

Elasticidad

ELASTICIDAD
En física el término elasticidad designa la propiedad mecánica de ciertos materiales de sufrir deformaciones reversibles cuando se encuentran sujetos a la acción de fuerzas exteriores y de recuperar la forma original si estas fuerzas exteriores se eliminan.
 
Una varilla elástica vibrando, es un ejemplo de sistema donde la energía potencial elástica se transforma en energía cinética y viceversa.

La elasticidad es estudiada por la teoría de la elasticidad, que a su vez es parte de la mecánica de sólidos deformables. La teoría de la elasticidad (TE) como la mecánica de sólidos (MS) deformables describe cómo un sólido (o fluido totalmente confinado) se mueve y deforma como respuesta a fuerzas exteriores. La diferencia entre la TE y la MS es que la primera solo trata sólidos en que las deformaciones son termodinámicamente reversibles y en los que el estado tensiones \boldsymbol{\sigma} en un punto \mathbf{x} en un instante dado dependen solo de las deformaciones \boldsymbol{\varepsilon} en el mismo punto y no de las deformaciones anteriores (ni el valor de otras magnitudes en un instante anterior). Para un sólido elástico la ecuación constitutiva funcionalmente es de la forma:
\boldsymbol{\sigma}(\mathbf{x},t) = \hat{T}(\boldsymbol{\varepsilon}(\mathbf{x},t);\mathbf{x}), \qquad \qquad
\hat{T}:\mathcal{T}_2(\R^3) \times \R^3 \to \mathcal{T}_2(\R^3)
donde \scriptstyle \mathcal{T}_2(\R^3) denota el conjunto de tensores simétricos de segundo orden del espacio euclídeo. Si el sólido es homogéneo el valor de la función anterior no dependerá del segundo argumento.
La propiedad elástica de los materiales está relacionada, como se ha mencionado, con la capacidad de un sólido de sufrir transformaciones termodinámicas reversibles e independencia de la velocidad de deformación (los sólidos viscoelásticos y los fluidos, por ejemplo, presentan tensiones dependientes de la velocidad de deformación). Cuando sobre un sólido deformable actúan fuerzas exteriores y éste se deforma se produce un trabajo de estas fuerzas que se almacena en el cuerpo en forma de energía potencial elástica y por tanto se producirá un aumento de la energía interna. El sólido se comportará elásticamente si este incremento de energía puede realizarse de forma reversible, en este caso se dice que el sólido es elástico.

 
Componentes del tensor tensión en un punto P de un sólido deformable.

Elasticidad lineal

Un caso particular de sólido elástico se presenta cuando las tensiones y las deformaciones están relacionadas linealmente, mediante la siguiente ecuación constitutiva:
\sigma_{ij} = \sum_{k,l} C_{ijkl}\varepsilon_{kl} \,
Cuando eso sucede se dice que el sólido es elástico lineal. La teoría de la elasticidad lineal es el estudio de sólidos elásticos lineales sometidos a pequeñas deformaciones de tal manera que además los desplazamientos y deformaciones sean "lineales", es decir, que las componentes del campo de desplazamientos u sean muy aproximadamente una combinación lineal de las componentes del tensor deformación del sólido. En general un sólido elástico lineal sometido a grandes desplazamientos no cumplirá esta condición. Por tanto la teoría de la elasticidad lineal solo es aplicable a:
  • Sólidos elásticos lineales, en los que tensiones y deformaciones estén relacionadas linealmente (linealidad material).
  • Deformaciones pequeñas, es el caso en que deformaciones y desplazamientos están relacionados linealmente. En este caso puede usarse el tensor deformación lineal de Green-Lagrange para representar el estado de deformación de un sólido (linealidad geométrica).
Debido a los pequeños desplazamientos y deformaciones a los que son sometidos los cuerpos, se usan las siguientes simplificaciones y aproximaciones para sistemas estables:
  • Las tensiones se relacionan con las superficies no deformadas
  • Las condiciones de equilibrio se presentan para el sistema no deformado
Para determinar la estabilidad de un sistema hay presentar las condiciones de equilibrio para el sistema deformado.

Tensión

Componentes del tensor tensión en un punto P de un sólido deformable.
 
La tensión en un punto se define como el límite de la fuerza aplicada sobre una pequeña región sobre un plano π que contenga al punto dividida del área de la región, es decir, la tensión es la fuerza aplicada por unidad de superficie y depende del punto elegido, del estado tensional de sólido y de la orientación del plano escogido para calcular el límite. Puede probarse que la normal al plano escogido nπ y la tensión tπ en un punto están relacionadas por:
 {t_\pi} = {\mathbf{T}(n_\pi)} \,


 

Estados de agregacion de la materia

ESTADOS DE AGREGACION DE LA MATERIA 
En física y química se observa que, para cualquier sustancia o mezcla, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de unión de las partículas (moléculas, átomos o iones) que la constituyen.
Todos los estados de agregación poseen propiedades y características diferentes; los más conocidos y observables cotidianamente son cuatro, llamados fases sólida, líquida, gaseosa y plasmática. También son posibles otros estados que no se producen de forma natural en nuestro entorno, por ejemplo: condensado de Bose-Einstein, condensado fermiónico y estrellas de neutrones. Se cree que también son posibles otros, como el plasma de quark-gluón.
 
Este diagrama muestra la nomenclatura para las diferentes transiciones de fase su reversibilidad y relación con la variación de la entalpía.

Estado sólido

Los objetos en estado sólido se presentan como cuerpos de forma definida; sus átomos a menudo se entrelazan formando estructuras estrechas definidas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Son calificados generalmente como duros y resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión. En los sólidos cristalinos, la presencia de espacios intermoleculares pequeños da paso a la intervención de las fuerzas de enlace, que ubican a las celdillas en formas geométricas. En los amorfos o vítreos, por el contrario, las partículas que los constituyen carecen de una estructura ordenada.
Las sustancias en estado sólido suelen presentar algunas de las siguientes características:
  • Cohesión elevada;
  • Tienen una forma definida y memoria de forma, presentando fuerzas elásticas restitutivas si se deforman fuera de su configuración original;
  • A efectos prácticos son incompresibles,
  • Resistencia a la fragmentación;
  • Fluidez muy baja o nula;
  • Algunos de ellos se subliman. 
  • Resultado de imagen para estado solido Resultado de imagen para estado solido

Estado líquido

Si se incrementa la temperatura de un sólido, este va perdiendo forma hasta desaparecer la estructura cristalina, alcanzando el estado líquido. Característica principal: la capacidad de fluir y adaptarse a la forma del recipiente que lo contiene. En este caso, aún existe cierta unión entre los átomos del cuerpo, aunque mucho menos intensa que en los sólidos. El estado líquido presenta las siguientes características:
  • Cohesión menor.
  • Movimiento energía cinética.
  • Son fluidos, no poseen forma definida, ni memoria de forma por lo que toman la forma de la superficie o el recipiente que lo contiene.
  • En el frío se contrae (exceptuando el agua).
  • Posee fluidez a través de pequeños orificios.
  • Puede presentar difusión.
  • Son poco compresibles.

Estado gaseoso

Se denomina gas al estado de agregación de la materia que no tiene forma ni volumen definido. Su principal composición son moléculas no unidas, expandidas y con poca fuerza de atracción, haciendo que no tengan volumen y forma definida, provocando que este se expanda para ocupar todo el volumen del recipiente que la contiene, con respecto a los gases las fuerzas gravitatorias y de atracción entre partículas resultan insignificantes. Es considerado en algunos diccionarios como sinónimo de vapor, aunque no hay que confundir sus conceptos, ya que el término de vapor se refiere estrictamente para aquel gas que se puede condensar por presurización a temperatura constante. Los gases se expanden libremente hasta llenar el recipiente que los contiene, y su densidad es mucho menor que la de los líquidos y sólidos.
Dependiendo de sus contenidos de energía o de las fuerzas que actúan, la materia puede estar en un estado o en otro diferente: se ha hablado durante la historia, de un gas ideal o de un sólido cristalino perfecto, pero ambos son modelos límites ideales y, por tanto, no tienen existencia real.
En los gases reales no existe un desorden total y absoluto, aunque sí un desorden más o menos grande.
En un gas, las moléculas están en estado de caos y muestran poca respuesta a la gravedad. Se mueven tan rápidamente que se liberan unas de otras. Ocupan entonces un volumen mucho mayor que en los otros estados porque dejan espacios libres intermedios y están enormemente separadas unas de otras. Por eso es tan fácil comprimir un gas, lo que significa, en este caso, disminuir la distancia entre moléculas. El gas carece de forma y de volumen, porque se comprende que donde tenga espacio libre allí irán sus moléculas errantes y el gas se expandirá hasta llenar por completo cualquier recipiente.
El estado gaseoso presenta las siguientes características:
  • Cohesión casi nula.
  • No tienen forma definida.
  • Su volumen es variable.

Estado plasmático

El plasma es un gas ionizado, es decir que los átomos que lo componen se han separado de algunos de sus electrones. De esta forma el plasma es un estado parecido al gas pero compuesto por aniones y cationes (iones con carga negativa y positiva, respectivamente), separados entre sí y libres, por eso es un excelente conductor. Un ejemplo muy claro es el Sol.
En la baja Atmósfera terrestre, cualquier átomo que pierde un electrón (cuando es alcanzado por una partícula cósmica rápida) se dice que está ionizado. Pero a altas temperaturas es muy diferente. Cuanto más caliente está el gas, más rápido se mueven sus moléculas y átomos, (ley de los gases ideales) y a muy altas temperaturas las colisiones entre estos átomos, moviéndose muy rápido, son suficientemente violentas para liberar los electrones. En la atmósfera solar, una gran parte de los átomos están permanentemente «ionizados» por estas colisiones y el gas se comporta como un plasma.
A diferencia de los gases fríos (por ejemplo, el aire a temperatura ambiente), los plasmas conducen la electricidad y son fuertemente influidos por los campos magnéticos. La lámpara fluorescente, contiene plasma (su componente principal es vapor de mercurio) que calienta y agita la electricidad, mediante la línea de fuerza a la que está conectada la lámpara. La línea, positivo eléctricamente un extremo y negativo, causa que los iones positivos se aceleren hacia el extremo negativo, y que los electrones negativos vayan hacia el extremo positivo. Las partículas aceleradas ganan energía, colisionan con los átomos, expulsan electrones adicionales y mantienen el plasma, aunque se recombinen partículas. Las colisiones también hacen que los átomos emitan luz y esta forma de luz es más eficiente que las lámparas tradicionales. Los letreros de neón y las luces urbanas funcionan por un principio similar y también se usaron en electrónicas.


EMPUJE

EMPUJE
El empuje es una fuerza de reacción descrita cuantitativamente por la tercera ley de Newton. Cuando un sistema expele o acelera masa en una dirección (acción), la masa acelerada causará una fuerza igual en dirección contraria (reacción). Matemáticamente esto significa que la fuerza total experimentada por un sistema se acelera con una masa m que es igual y opuesto a m veces la aceleración a, experimentada por la masa:
\sum^{}_{} \vec F = m \vec a

“Todo cuerpo sumergido en un fluido experimenta una fuerza hacia arriba igual al peso del volumen de fluido desplazado por dicho cuerpo”.
Arquímedes


El segundo principio importante de la estática de fluidos fue descubierto por el matemático y filósofo griego Arquímedes. La mayoría de las veces se aplica al comportamiento de los objetos en agua, y explica por qué los objetos flotan y se hunden y por qué parecen ser más ligeros en este medio. El concepto clave de este principio es el ‘empuje’, que es la fuerza que actúa hacia arriba reduciendo el peso aparente del objeto cuando éste se encuentra en el agua.
 
El principio de Arquímedes permite determinar la densidad de un objeto cuya forma es tan irregular que su volumen no puede medirse directamente. Si el objeto se pesa primero en el aire y luego en el agua, la diferencia de peso será igual al peso del volumen de agua desplazado, y este volumen es igual al volumen del objeto, si éste está totalmente sumergido. Así puede determinarse fácilmente la densidad del objeto.
 
Principio de Arquímedes
 
Al sumergirse parcial o totalmente en un fluido, un objeto es sometido a una fuerza hacia arriba, o empuje. El empuje es igual al peso del fluido desplazado. Aquí se ilustra el principio en el caso de un bloque de aluminio y uno de madera. (1) El peso aparente de un bloque de aluminio sumergido en agua se ve reducido en una cantidad igual al peso del agua desplazada.  Si un bloque de madera está completamente sumergido en agua, el empuje es mayor que el peso de la madera (esto se debe a que la madera es menos densa que el agua, por lo que el peso de la madera es menor que el peso del mismo volumen de agua). Por tanto, el bloque asciende y emerge del agua parcialmente —desplazando así menos agua— hasta que el empuje iguala exactamente el peso del bloque.





La fórmula para calcular el empuje es la siguiente:





 



Donde:
E=empuje                                                                                                                                            r= densidad de la sustancia que provoca el empuje (kg/m3)                                                                                                             g= aceleración de la gravedad                                                                                                         v= volumen de la sustancia que recibe el empuje (m3)              
Las unidades resultantes son N.
 
El empuje es una fuerza y todas las fuerzas son medidas en Newtons






Resultado de imagen para empuje en fisica
Resultado de imagen para empuje en fisica

PESO ESPECIFICO

PESO ESPECIFICO

Se le llama peso específico a la relación entre el peso de una sustancia y su volumen.
Su expresión de cálculo es:
\gamma = \frac {P}{V} = \frac {m g}{V}= \rho\ g
siendo,
\gamma\,, el peso específico;
P\,, el peso de la sustancia;
V\,, el volumen de la sustancia;
\rho\,, la densidad de la sustancia;
m\,, la masa de la sustancia;
g\,, la aceleración de la gravedad.
 
Peso Específico es una terminología que se utiliza en química y física para describir a aquella relación existente entre el peso y el volumen que ocupa una sustancia. La unidad de medida que se utiliza para medir este peso específico más común es el Newton sobre metro cúbico, más sin embargo, otras dependencias científicas del mundo utilizan el Kilopondio sobre Metro Cúbico, la primera unidad pertenece al “sistema internacional” que se aplica en el continente americano y la segunda al sistema técnico propio de los estudiantes asiáticos y de algunas regiones del oriente medio y el sur de Europa.

Siendo el peso aquella fuerza de atracción sobre las cosas que ejerce la tierra hacia ella y también el valor de la masa, y el volumen la superficie que ocupa una sustancia, ente u objeto en una forma geométrica cualquiera, resulta interesante esta disyuntiva física, porque para unos el peso específico es aquel que determina la densidad, mientras que para otros es el peso que ocupa una sustancia en un espacio, resultaría a efecto de lectura lo mismo, pero el cálculo es empleado para diferentes funciones tanto en la física como en la química.

La fórmula para calcular el Peso Específico es la siguiente:








En la fórmula que acabamos de apreciar, gamma corresponde al peso específico, P es el peso de la sustancia, V es el Volumen que ocupa en el recipiente, D es la densidad y G es la constante de gravedad que equivale a 9.8 metros cuadrados sobre segundos cuadrados.


El peso específico de una sustancia es su peso por unidad de volumen

Peso = m.g
Peso = r.Volumen.g
Peso específico = g
g = Peso = masa.gravedad = r.g
Volumen Volumen
 Peso de un cuerpo = g.Volumen
Unidades para el peso específico:  [ g  ] = [ F/L3 ]
Peso específico del agua
Temperatura
Peso
Específico
°C
N/m3
0
9805
5
9806
10
9803
20
9786
40
9737
60
9658
80
9557
100
9438
g agua 4 °C = 9,8 kN/m3
Gamma vs Temperatura
 

El peso específico es aquel que relaciona el peso de un componente con su volumen, quedando representado con las siguientes formulas;
=w/v
Relación entre el peso y el volumen
=mg/v
Relación entre la densidad y el peso especifico.
ᵨ= ᵧ/g
Relación entre la densidad y el peso especifico.
ᵧ=ᵨg
Resultado de despejar peso especifico en la expresión anterior.

Las unidades en las que se mide el peso específico son de N/M3.
Ahora ejemplificaremos algunas situaciones en donde se utilicen estos tipos de relaciones.

José se dirige hacia la gasolinera y de momento recuerda que cuando el era estudiante le enseñaron a realizar diversos cuestionamientos con respecto del entorno  y se hizo el siguiente cuestionamiento;
Si comprara 15000 litros de gasolina con una densidad de 700 kg/m3 .
 
¿Cuál sería la masa y el peso específico de estos?
Ayudemos a José.

ᵨ=700kg/m3

Conversión;
Si tenemos que el volumen lo necesitamos en m3 entonces pasemos de litros a esa unidad.
Equivalencia 1m3 = 1000lt,  por lo tanto  15000 litros son iguales o equivalentes a 15m3.
 
Ya teniendo en orden nuestros datos pasemos a buscar la fórmula a utilizar dependiendo de los datos que nos dan.
Quiero calcular peso especifico y solo tengo la densidad por lo tanto usaremos una fórmula que contenga un dato conocido de manera general.
ᵧ=ᵨg
 
Asi que ahora solo sustituimos los valores para llegar a la primera incógnita.
 
ᵧ= (700kg/m3)( 9.81 m/s2)
ᵧ=6867 N/m3
Solo falta sacar la masa.
=m/v
m= v
m=(700kg/m3)(15m3)
m=10500 kg

V=1500 litros
 
Resultado de imagen para PESO ESPECIFICO

 Resultado de imagen para PESO ESPECIFICO