lunes, 27 de abril de 2015

Equilibrio Rotacional


Equilibrio Rotacional


Equilibrio Rotacional.- Ocurre cuando un cuerpo o sistema no gira con respecto a algún punto, aunque exista una tendencia.
CONDICIONES DE EQUILIBRIO: Esta condición de equilibrio implica que una fuerza aislada aplicada sobre un cuerpo no puede producir por sí sola equilibrio y que, en un cuerpo en equilibrio, cada fuerza es igual y opuesta a la resultante de todas las demás. Así, dos fuerzas iguales y opuestas, actuando sobre la misma línea de acción, sí producen equilibrio. El equilibrio puede ser de tres clases: estable, inestable e indiferente. Si un cuerpo está suspendido, el equilibrio será estable si el centro de gravedad está por debajo del punto de suspensión; inestable si está por encima, e indiferente si coinciden ambos puntos. Si un cuerpo está apoyado, el equilibrio será estable cuando la vertical que pasa por el centro de gravedad caiga dentro de su base de sustentación; inestable cuando pase por el límite de dicha base, e indiferente cuando la base de sustentación sea tal que la vertical del centro de gravedad pase siempre por ella.
Estabilidad y Equilibrio
Un cuerpo en equilibrio estático, si no se le perturba, no sufre aceleración de traslación o de rotación, porque la suma de todas las fuerzas u la suma de todos los momentos que actúan sobre él son cero. Sin embargo, si el cuerpo se desplaza ligeramente, son posibles tres resultados: (1) el objeto regresa a su posición original, en cuyo caso se dice que está en equilibrio estable; (2) el objeto se aparta más de su posición, en cuyo caso se dice que está en equilibrio inestable; o bien (3) el objeto permanece en su nueva posición, en cuyo caso se dice que está en equilibrio neutro o indiferente.
Daremos los ejemplos siguientes: Una pelota colgada libremente de un hilo está en equilibrio estable porque si se desplaza hacia un lado, rápidamente regresará a su posición inicial. Por otro lado, un lápiz parado sobre su punta está en equilibrio inestable; si su centro de gravedad está directamente arriba de su punta la fuerza y el momento netos sobre él serán cero, pero si se desplaza aunque sea un poco, digamos por alguna corriente de aireo una vibración, habrá un momento sobre él y continuaré cayendo en dirección del desplazamiento original. Por último, un ejemplo de cuerpo en equilibrio indiferente es una esfera que descansa sobre una mesa horizontal; si se desplaza ligeramente hacia un lado permanecerá en su posición nueva.
En la mayor parte de los casos como en el diseñode estructuras y en trabajos con el cuerpo humano, nos interesa mantener equilibrio estable o balance, como decimos a veces. En general un objeto cuyo centro de gravedad esté debajo de su punto de apoyo, como por ejemplo una pelota sujeta de un hilo, estará en equilibrio estable. Si el centro de gravedad está arriba de la base o soporte, tenemos un caso más complicado. Por ejemplo, el bloque que se para sobre su extremo, si se inclina ligeramente regresará a su estado original, pero si se inclina demasiado, caerá. El punto crítico se alcanza cuando el centro de gravedad ya no cae sobre la base de soporte. En general, un cuerpo cuyo centro de gravedad está arriba de su base de soporte estará en equilibrio estable si una línea vertical que pase por su centro de gravedad pasa dentro de su base de soporte. Esto se debe a que la fuerza hacia arriba sobre el objeto, la cual equilibra a la gravedad, sólo se puede ejercer dentro del área de contacto, y entonces, si la fuerza de gravedad actúa más allá de esa área, habrá un momento neto que volteará el objeto. Entonces la estabilidad puede ser relativa. Un ladrillo que yace sobre su cara más amplia es más estable que si yace sobre su extremo, porque se necesitará más esfuerzo para hacerlo voltear. En el caso extremo del lápiz, la base es prácticamente un punto y la menor perturbación lo hará caer. En general, mientras más grande sea la base y más abajo esté el centro de gravedad, será más estable el objeto.
En este sentido, los seres humanos son mucho menos estables que losmamíferoscuadrúpedos, los cuales no sólo tienen mayor base de soporte por sus cuatro patas, sino que tienen un centro de gravedad más bajo. La especie humana tuvo que desarrollar características especiales, como ciertos músculosmuy poderosos, para podermanejar el problema de mantenerse parados y al mismo tiempo estable. A causa de su posición vertical, los seres humanos sufren de numerosos achaques, como el dolor de la parte baja de la espalda debido a las grandes fuerzas que intervienen. Cuando camina y efectúa otros tipos de movimientos, una persona desplaza continuamente su cuerpo, de modo que su centro de gravedad esté sobre los pies, aunque en el adulto normal ello no requiera de concentración de pensamiento. Un movimiento tan sencillo, como el inclinarse, necesita del movimiento de la cadera hacia atrás para que el centro de gravedad permanezca sobre los pies, y este cambio de posición se lleva a cabo sin reparar en él. Para verlo párese usted con sus piernas y espalda apoyadas en una pared y trate de tocar los dedos de sus pies. Las personas que cargan pesos grandes ajustan en forma automática su postura para que el centro de gravedad de la masa total caiga sobre sus pies.

Equilibrio Traslacional

Equilibrio Traslacional

Un cuerpo se encuentra en equilibrio traslacional cuando la sumatoria de todas las componentes en X es igual a 0 y todas las componentes en Y es igual a 0.
Cuando un cuerpo esta en equilibrio traslacional no tiene fuerza resultante actuando sobre el.




EJEMPLO DE PROBLEMA DE APLICACIÓN:
Una caja de 8 N está suspendida por un alambre de 2 m que forma un ángulo de 45° con la vertical. ¿Cuál es el valor de las fuerzas horizontal y en el alambre para que el cuerpo se mantenga estático?.
Primero se visualiza el problema de la siguiente manera:
A continuación se elabora su diagrama de cuerpo libre.
Ahora por medio de la descomposición de los vectores, calculamos lafuerza de cada uno de ellos.
F1x = - F1 cos 45°*
F1y = F1 sen 45°
F2x = F2 cos 0° = F2
F2y = F2sen0°=0
F3x = F3cos90°=0
F3y = - F3 sen 90° = - 8 N*
Porque los cuadrantes en los que se localizan son negativos.

Como únicamente conocemos los valores de F3, F2 y la sumatoria debe ser igual a cero en x e y, tenemos lo siguiente:
EFx=F1x+F2x+F3x=0
EFy=F1y+F2y+F3y=0
Por lo tanto tenemos lo siguiente:
EFx=-F1 cos 45+F2=0
          F2=F1(0.7071)
EFy=-F1sen45-8N=0
          8N=F1(0.7071)
          F1=8N/0.7071=11.31 N
Para calcular F2, se sustituye F1 de la ecuación siguiente:
F2=F1(0.7071)
F2=11.31(0.7071)=8N

 Resultado de imagen para equilibrio traslacional              Resultado de imagen para equilibrio traslacional

Leyes De Newton

Las leyes de Newton, también conocidas como leyes del movimiento de Newton,1 son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la mecánica, en particular, aquellos relativos al movimiento de los cuerpos. Revolucionaron los conceptos básicos de la fisica y el movimiento de los cuerpos en el universo.

Primera ley de Newton o ley de la inercia

La primera ley del movimiento rebate la idea aristotélica de que un cuerpo solo puede mantenerse en movimiento si se le aplica una fuerza. Newton expone que:
Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus illud a viribus impressis cogitur statum suum mutare4 Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre él.5
Esta ley postula, por tanto, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas cuyo resultante no sea nulo sobre él. Newton toma en cuenta, así, el que los cuerpos en movimiento están sometidos constantemente a fuerzas de roce o fricción, que los frena de forma progresiva, algo novedoso respecto de concepciones anteriores que entendían que el movimiento o la detención de un cuerpo se debía exclusivamente a si se ejercía sobre ellos una fuerza, pero nunca entendiendo como esta a la fricción.
En consecuencia, un cuerpo con movimiento rectilíneo uniforme implica que no existe ninguna fuerza externa neta o, dicho de otra forma; un objeto en movimiento no se detiene de forma natural si no se aplica una fuerza sobre él. En el caso de los cuerpos en reposo, se entiende que su velocidad es cero, por lo que si esta cambia es porque sobre ese cuerpo se ha ejercido una fuerza neta.

Segunda ley de Newton o ley de fuerza

La segunda ley del movimiento de Newton dice:
Mutationem motus proportionalem esse vi motrici impressæ, & fieri secundum lineam rectam qua vis illa imprimitur.4 El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.6
Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en el momento lineal de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.
En la mayoría de las ocasiones hay más de una fuerza actuando sobre un objeto, en este caso es necesario determinar una sola fuerza equivalente ya que de ésta depende la aceleración resultante. Dicha fuerza equivalente se determina al sumar todas las fuerzas que actúan sobre el objeto y se le da el nombre de fuerza neta.7
En términos matemáticos esta ley se expresa mediante la relación:
\mathbf{F}_{\text{net}} = {\mathrm{d}\mathbf{p} \over \mathrm{d}t}
:

Tercera ley de Newton o principio de acción y reacción

Actioni contrariam semper & æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales & in partes contrarias dirigi.4 Con toda acción ocurre siempre una reacción igual y contraria: quiere decir que las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.6
La tercera ley de Newton es completamente original (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo.8 Expone que por cada fuerza que actúa sobre un cuerpo (empuje), este realiza una fuerza de igual intensidad, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y de dirección, pero con sentido opuesto.
Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c".
Es importante observar que este principio relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley. Junto con las anteriores leyes, ésta permite enunciar los principios de conservación del momento lineal y del momento angular.
\mathbf{F}_{\text{net}} = {\mathrm{d}\mathbf{p} \over \mathrm{d}t}

Movimiento Circular Uniformemente Acelerado

Movimiento circular uniformemente acelerado

El movimiento circular uniformemente acelerado (MCUA) es un movimiento circular cuya aceleración α es constante.

Dada la aceleración angular α podemos obtener la velocidad angular ω mediante la siguiente ecuación:

(1)\omega(t) = \omega_0 + \alpha t
Siendo α la aceleración y ω0 la velocidad inicial. Dada la velocidad angular ω(t) en función del tiempo es sencillo encontrar la evolución de la posición:

(2)\theta(t) = \theta_0 + \omega_0 t +\frac{1}{2}\alpha t^2
Formalmente estas fórmulas son análogas a las del movimiento rectilineo uniformemente acelerado (MRUA) si bien las implicaciones prácticas pueden ser importantes. Por ejemplo, el MRUA requiere una fuerza centrípeta creciente, por lo que si se construye un sistema que ejecute un MCUA es posible que en algún momento se rebase la capacidad resistente de los materiales usados para construir el sistema. La fuerza total necesaria para sostener el MCUA dado por la ecuación (1) vendrá dada por:

F(t) = mR \sqrt{\alpha^2 + (\omega_0 + \alpha t)^4}
donde R es el radio de la trayectoria.

MCUA en relatividad

En teoría de la relatividad no puede existir un auténtico MCUA indefinidamente ni aun con una fuerza creciente. Esto se debe a que la fuerza en la dirección de la velocidad o fuerza paralela vendría dada por:

F_\| = \frac{m\omega R\cos \alpha}{\left(1-\frac{\omega^2R^2}{c^2}\right)^{3/2}} a
donde:

\omega\, la velocidad angular.
R\, es el radio de la trayectoria.
\alpha el ángulo entre la velocidad y la aceleración a.
c\, la velocidad de la luz.
Esta fuerza podría llegar a hacerse infinita en un tiempo finito lo cual es físicamente irrealizable.

El movimiento circular uniformemente acelerado (MCUA) se presenta cuando una partícula o cuerpo sólido describe una trayectoria circular aumentando o disminuyendo la velocidad de forma constante en cada unidad de tiempo. Es decir, la partícula se mueve con aceleración constante.
En el dibujo se observa un ejemplo en donde la velocidad aumenta linealmente en el tiempo. Suponiendo que el tiempo en llegar del punto P1 a P2 sea una unidad de tiempo, la partícula viaja con una aceleracion tangencial uniforme v, incrementándose esa cantidad en cada unidad de tiempo.

Posición

Dibujo de la posición de una partícula en un movimiento circular uniformemente acelerado (MCUA)
El desplazamiento de la partícula es más rápido o más lento según avanza el tiempo. El ángulo recorrido (θ) en un intervalo de tiempo t se calcula por la siguiente fórmula:



Aplicando la fórmula del incremento de ángulo calculamos la posición en la que estará la partícula pasado un tiempo t se obtiene la fórmula de la posición:


Fórmula de la posición de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Velocidad angular

La velocidad angular aumenta o disminuye linealmente cuando pasa una unidad del tiempo. Por lo tanto, podemos calcular la velocidad angular en el instante t como:

Fórmula de la velocidad angular de una partícula en un movimiento circular uniformemente acelerado (MCUA)
El sentido de la aceleración angularα puede ser contrario al de la velocidad angular ω. Si la aceleración angular es negativa, seria un caso de movimiento circular uniformemente retardado.

Velocidad tangencial

La velocidad tangencial es el producto de la velocidad angular por el radio r. La velocidad tangencial también se incrementa linealmente mediante la siguiente fórmula:


Fórmula de la velocidad tangencial de una partícula en un movimiento circular uniformemente acelerado (MCUA)
Dándose aquí igualmente la posibilidad de aceleración negativa que se ha descrito en el apartado anterior.

Aceleración angular

La aceleracion angular en el movimiento circular uniformemente acelerado es constante. Se calcula como el incremento de velocidad angular ω desde el instante inicial hasta el final partido por el tiempo.




Fórmula de la aceleracion tangencial de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Aceleración centrípeta

La aceleracion centrípeta en el MCUA se halla mediante:


Fórmula de la aceleración centrípeta en el movimiento circular uniformemente acelerado(MCUA)

Componentes intrínsecas de la aceleración

Dibujo de las componentes intrínsecas de la aceleración en el movimiento circular.
La velocidadtangencial por la trayectoria en un punto P es v. En un intervalo de tiempo pequeño Δt, la velocidad incrementa a v’ en el punto P’, después de haber descrito un ángulo Δφ.
En la figura se puede ver el incremento de la velocidad tangencial Δv descompuesta en dos componentes: la tangencial Δvt y la normal (o centrípeta) Δvn.
Si dividimos ambas componentes de la velocidad por Δt, tendremos las componentes intrínsecas de la aceleración: la aceleración tangencial at y la aceleración normal an (o centrípeta).
 
Período
En el MCUA la velocidad angular cambia respecto al tiempo. Por tanto, el período cada vez será menor o mayor según si decrece o crece la velocidad angular.


Fórmula del período en el movimiento circular uniformemente acelerado (MCUA)
Fórmula del ángulo recorrido por una partícula dependiendo del tiempo en un movimiento circular uniformemente acelerado (MCUA) 

Freciencia

La frecuencia en el caso del MCUA es mayor o menor porque la velocidad angular cambia. La fórmula de la frecuencia será:



Fórmula de la frecuencia en el movimiento circular uniformemente acelerado (MCUA)

Movimiento Circular Uniforme

Movimiento circular uniforme


En física, el movimiento circular uniforme (también denominado movimiento uniformemente circular) describe el movimiento de un cuerpo atravesando, con rapidez constante, una trayectoria circular.
Aunque la rapidez del objeto es constante, su velocidad no lo es: La velocidad, una magnitud vectorial, tangente a la trayectoria, en cada instante cambia de dirección. Esta circunstancia implica la existencia de una aceleración que, si bien en este caso no varía al módulo de la velocidad, sí varía su dirección.

Ángulo y velocidad angular

El ángulo abarcado en un movimiento circular es igual al cociente entre la longitud del arco de circunferencia recorrida y el radio.
La longitud del arco y el radio de la circunferencia son magnitudes de longitud, por lo que el desplazamiento angular es una magnitud adimensional, llamada radián. Un radián es un arco de circunferencia de longitud igual al radio de la circunferencia, y la circunferencia completa tiene 2\pi\, radianes.
La velocidad angular es la variación del desplazamiento angular por unidad de tiempo:
 \omega = \frac{d\varphi}{dt}
Partiendo de estos conceptos se estudian las condiciones del movimiento circular uniforme, en cuanto a su trayectoria y espacio recorrido, velocidad y aceleración, según el modelo físico cinemático.

Posición

Moviment circular.jpg
Se considera un sistema de referencia en el plano x,y, con vectores unitarios en la dirección de estos ejes  (\text{O}; \mathbf i, \mathbf j) . La posición de la partícula en función del ángulo de giro  \varphi y del radio r es en un sistema de referencia cartesiano x,y:
\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases}
De modo que el vector de posición de la partícula en función del tiempo es:

 \mathbf {r} = r \cos (\omega t) \mathbf i + r \sin (\omega t) \mathbf j
siendo:

 \mathbf{r} \; : es el vector de posición de la partícula.
 r \; : es el radio de la trayectoria.
Al ser un movimiento uniforme, a iguales incrementos de tiempo le corresponden iguales desplazamientos angulares, lo que se define como velocidad angular (ω):

 \omega = \frac{d\varphi}{dt} = \frac{\varphi}{t}
 \qquad\Rightarrow\qquad \varphi = \omega {t}
El ángulo (φ), debe medirse en radianes:

 \varphi = \frac{s}{r}
donde s es la longitud del arco de circunferencia
Según esta definición:

1 vuelta = 360° = 2 π radianes
½ vuelta = 180° = π radianes
¼ de vuelta = 90° = π /2 radianes

Velocidad tangencial

La velocidad se obtiene a partir del vector de posición mediante derivación tangencial:

\mathbf{v} = \frac{d\mathbf r}{dt} =
-r\omega\sin (\omega t) \mathbf i + r\omega\cos (\omega t) \mathbf j
La relación entre la velocidad angular y la velocidad tangencial es:

{v} = |\mathbf v | = \sqrt {(-r\omega\sin (\omega t))^2 + (r\omega\cos (\omega t))^2} = \omega r
El vector velocidad es tangente a la trayectoria, lo que puede comprobarse fácilmente efectuando el producto escolar \mathbf r \cdot \mathbf v y comprobando que es nulo.

Aceleración

La aceleración se obtiene a partir del vector velocidad con la derivación:

\mathbf{a} = \frac{d\mathbf v}{dt} =
-r\omega^2\cos (\omega t) \mathbf i - r\omega^2\sin (\omega t) \mathbf j
de modo que

\mathbf{a} = -\omega^2 \mathbf r
Así pues, el vector aceleración tiene dirección opuesta al vector de posición, normal a la trayectoria y apuntando siempre hacia el centro de la trayectoria circular, por lo que acostumbramos a referirnos a ella como aceleración normal o centrípeta.
El módulo de la aceleración es el cuadrado de la velocidad angular por el radio de giro, aunque lo podemos expresar también en función de la celeridad v\, de la partícula, ya que, en virtud de la relación v=\omega r\,, resulta

a = \omega^2 r = \frac{v^2}{r}
Esta aceleración es la única que experimenta la partícula cuando se mueve con rapidez constante en una trayectoria circular, por lo que la partícula deberá ser atraída hacia el centro mediante una fuerza centripeta que la aparte de una trayectoria rectilínea, como correspondería por la ley de inercia.

Movimiento circular y movimiento armónico

En dos dimensiones la composición de dos movimientos armónicos de la misma frecuencia y amplitud, convenientemente desfasados, dan lugar a un movimiento circular uniforme. Por ejemplo un movimiento bidimensional dado por las ecuaciones:
x(t)=R_0\sin(\omega t+\pi/2),\ y(t)=R_0\sin(\omega t)
El momento angular puede calcularse como:
L=xp_y - yp_x = m(xv_{y}-yv_{x}) = m\omega R^2
De hecho las órbitas planetarias circulares pueden entenderse como la composición de dos movimientos armónicos según dos direcciones mutuamente perpendiculares.

Período y frecuencia

El período T\, representa el tiempo necesario para que el móvil complete una vuelta y viene dado por:
T=\frac{2\,\pi}{\omega}
La frecuencia f\, mide el número de revoluciones o vueltas completadas por el móvil en la unidad de tiempo y viene dada por:
f=\frac{\omega}{2\,\pi}
Por consiguiente, la frecuencia es la inversa del período:
f = \frac{1}{T}

                Resultado de imagen para movimiento circular uniforme                     Resultado de imagen para movimiento circular uniforme   Resultado de imagen para movimiento circular uniforme